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ABSTRACT For the bilinear Hilbert transform given by:

H fg(x) 5 p.v.Ef(x 2 y)g(x 1 y)
dy
y
,

we announce the inequality iH fgip3 < Kp1,p2i f ip1igip2, provided
2 < p1, p2 < `, 1yp3 5 1yp1 1 1yp2 and 1 < p3 < 2.

We announce a partial resolution to long standing conjectures
concerning the operator known as the bilinear Hilbert trans-
form, defined as follows:

H fg~x! 5 lim
«30

E
uyu.«

f~x 2 y!g~x 1 y!
dy
y
.

This operation is initially defined only for certain functions f
and g, for instance those in the Schwartz class on R. The
conjectures concern the extension of H to a bounded operator
on Lp spaces. We have proved:

THEOREM 1. H extends to a bounded operator on Lp1 3 Lp2 into
Lp3, provided 2, p1, p2 , ` and 1, p3 , 2, where 1yp3 5 1yp1
1 1yp2.

Some 30 years ago, in connection with the Cauchy integral on
Lipschitz curves, Calderón (1) raised the question of H map-
ping L2 3 L2 into L1; this inequality is true. Indeed, the
bilinear Hilbert transform maps into Lp3 provided only that p3
. 2y3.
Study of the bilinear Hilbert transform is intimately related

to Carleson’s theorem (2) asserting the pointwise convergence
of Fourier series. A seminal result, it has received two proofs,
with the alternative proof provided by Fefferman (3). These
proofs have provided us with ingenious and complementary
methods of time frequency analysis. A similar analysis seems
necessary to understandH, and so our proof entails significant
aspects of both Carleson’s and Fefferman’s proofs. We give a
description of our proof, with details presented in their most
concrete form. Complete proofs, which appear in ref. 4,
require definitions and constructions somewhat more general
than those presented here.
The bilinear Hilbert transform must be broken into scales

and the frequency behavior of each scale understood. Hence
we replace the kernel 1yy with •j52`

` 2jr(2jy), where r is a
Schwartz function with Fourier transform r̂(j) 5 * e22pixjr(x)
dx supported on [1y2, 2). For each j, consider:

Hj fg~x! 5 E f~x 2 y!g~x 1 y!2jr~2jy!dy,

which has bilinear symbol r̂(22j(j 2 u)). More specifically,

Hj fg~x! 5 EE f̂~u!ĝ~j!e2pi~j1u!xr̂~22j~j 2 u!!djdu.

Therefore, if f is supported in frequency on the interval [n2j,
(n 1 1)2j], then Hj fg(x) acts on the inverse Fourier transform
of ĝ(j)1[(n 1 1y2)2j, (n 1 3)2j](j), and is supported in
frequency on the interval [(2n 1 1y2)2j, (2n 1 4)2j]. The
differing rates of translation make these three intervals dis-
tinct.
It is important to note that the location of the intervals is

arbitrary, and therefore, for all j and j9, the inner product of
Hj fg andHj9 fg need not tend to zero as uj2 j9u tends to infinity.
The analysis of H must be done in terms of both time and
frequency.
Instead of proceeding with a decomposition of H, we define a

model of it adapted to the combinatorics of the time–frequency
plane. Let $ be a dyadic grid in R. Call I 3 v [ $ 3 $ a tile
if uIuzuvu 5 1. The interval v is a union of four dyadic
subintervals of equal length, v1, v2, v3, and v4, which we list
in ascending order. Thus, ji , jj for all 1 # i , j # 4 and jj
[ vj. (We will only use vj for j 5 1, 2, 3.) We adopt the
notation t 5 It 3 vt and tj 5 It 3 vtj for j 5 1, 2, 3. Fix a
Schwartz function f with f̂ supported on [21y8, 1y8], in
addition require that * f(x 2 16n)f(x) dx 5 0 for all integers
n. Set for all tiles t and j 5 1, 2, 3,

ftj~x! 5
e2pic~vtj!x

ÎuItu
fSx 2 c~It!

uItu
D ,

where c(J) denotes the center of the interval J.
Then our model of the bilinear Hilbert transform is

}f1f2~x! 5 O
t

^f1, ft1&

ÎuItu
^f2, ft2&ft3~x!,

which is initially defined only for Schwartz functions f1 and f2.
We emphasize that the sum extends over all tiles, and hence all
scales. The analogue of Theorem 1 is

THEOREM 2. } extends to a bounded operator on Lp1 3 Lp2
into Lp93, provided 2, p1, p2 , ` and 1, p93 5 (1yp1 1 1yp2)21
, 2.

With more liberal notions of ‘‘grid,’’ ‘‘tile,’’ and ‘‘ftj,’’ the
bilinear Hilbert transform is in the convex hull of terms like our
model }.
In the present situation we can give a proof by way of duality.

Thus we take f3 [ Lp3 and show that:

O
t
U ^f1, ft1&

ÎuItu
^f2, ft2&^f3, ft3&U # KP

j51

3

ifjip j .

The sum is over positive quantities; namely, the decomposition
above already captures all of the cancellation necessary for
convergence of the sums. It also shows that the sum defining
} is unconditionally convergent in t. And as each fj [ Lpj,Copyright q 1997 by THE NATIONAL ACADEMY OF SCIENCES OF THE USA
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where pj . 2, it follows that each function is locally square
integrable. As it turns out,L2 arguments are decisive in proving
Theorem 2.
We localize the sum above in the x variable by setting:

Ft~x! 5 P
j51

3 u^fj, ftj&u
ÎuItu

1@It#~x!.

Certainly * Ft(x) dx 5 uItu21y2 )j51
3 u^fj, ftj&u. And so we show

that F(x)5 •tFt(x) is integrable. This follows from a weak-type
result: for pj as above, there is a d . 0 so that for all urj 2 pju
, d, 1 # j # 3, the operator F(x) maps Lr1 3 Lr2 3 Lr3 into
Lr,`, where 1yr 5 1yr1 1 1yr2 1 1yr3. Then a variant of the
Marcinkiewicz interpolation theorem due to Janson (5) im-
plies the strong-type inequality.
A single instance of the weak-type inequality is:

u$xuF~x! . KP
j51

3

ifjirj%u # K, [1]

for some constant K. But this inequality implies the weak-type
result, because F commutes with dilations by powers of 2, and
so it suffices to establish this last inequality. These observa-
tions are useful since some of our estimates begin to break
down on exceptional sets of small measure. Due the localiza-
tion of Ft in the time variable and the fact that we only aim for
a distributional inequality, we can delete tiles t whose time
coordinate falls in a set of bounded measure.
The combinatorics of the time frequency plane enter in by

way of the partial order on the tiles given by t , t9 if It , It9
and v . v9. Note that t and t9 are not comparable with respect
to , if and only if t ù t9 5 À. Being disjoint suggests
orthogonality for the functions ftj and ft9j9, the dominant
theme of Lemmas 1–3 we state below.
Call a collection of tiles T a Carleson–Fefferman (CF) set

with top q if t , q for all t [ T. Thus vq ù vt Þ À for t [ T.
Call T a j-CF set if T is a CF-set for which the intervals vtj
intersect for all t [ T. Notice that if T is a 1-CF set, say, then
the intervals {vtjut [ T} are pairwise disjoint for j 5 2, 3.
Therefore, by application of Cauchy–Schwartz:

uIqu21I O
t[T
Ft~x!I

1

# sup
t[T

u^f1, ft1&u
ÎuItu

3 P
j52

3 FU IqU21O
t[T
U ^fj, ftj&U 2G 1y2. [2]

Notice that the last two square functions are Littlewood–Paley
g functions, albeit conjugated by an exponential to account for
the location of the CF set in frequency.
This estimate forms the motivation for Lemma 1 below,

which formalizes a decomposition of the set of tiles that is
fundamental to our argument.

LEMMA 1. Fix pi . 2. There is a d . 0 and an «0 . 0 and a
constant K so that for all uri 2 piu , d and 0 , « , «0, the
following holds. The collection of all tiles S is a union:

S5 S0 ø
`

ø
n50

3

ø
i,j51

Sn,i,j,

with these properties. First, S0 is trivial in that:

U ø
s[ S0

IsU # K. [3]

Then Sn,i,j is a union of disjoint i-CF sets Tq with tops q [ S*n,i,j,
and:

O
t[Tq
Ft(x) # 22n(1yr2«) for all x, q[S*n,i,j. [4]

Here, recall that 1yr5•i 1yri,which can be taken arbitrarily close
to 1. And, most significantly, for t 5 mini{piy2} 2 «,

iNn,i,jit 5 I O
q[S*n,i,j

1IqI
t

# K2n(1yt1K«). [5]

With Lemma 1 in place, we estimate:

O
n50

` O
i, j51

3 I O
t[Sn,i, j

Ft~x!I
t

# O
n50

`

22n~1yr2«! O
i, j51

3

iNn,i, jit

# KO
n50

`

22n~1yr21yt2C«! # K9.

The last sum is finite as r is arbitrarily close to one, while t 1
« 5 min{piy2} . 1 is a fixed distance from one. Therefore,
with Eq. 3, Eq. 1 holds.
We cannot give the complete construction of the Sn,i, j, but

rather the initial steps, in which the nearly orthogonal classes
of fti are identified. First, we make an important comparison
to a maximal function. If Tq is an i-CF set with top q, we have
for j Þ i,

D~Tq, j! 5 F 1uIqu O
t[Tq

U ^fj, ftj&U 2G 1y2 # C inf
x[Iq

M2fj~x!.

HereM2g is the maximal function (Mugu2)1y2. Thus the set F 5
øi{M2fi . C21} has bounded measure and we define S0 5
{suIs , F}, making Eq. 4 trivial. For all i-CF sets T with top
q, and T , S\S0, we have D(T, j) # 1, for j Þ i.
The remaining construction is inductive. Assume that the

Sm,i, j are defined for all m , n and all i, j, in such a way that
for Sr 5 S\øm,nøi, jSm,i, j) we have:

u^fi, fti&u
ÎuItu

# 22nyri [ Sr, i 5 1, 2, 3, [6]

and for any i-CF set Tq , Sr with top q, D(Tq, j) # 22nyrj12,
for j Þ i. As the same inequality applies to each sub-CF set of
T, we conclude that:

IF O
t[Tq

U ^fj, ftj&

ÎuItu
U 21ItG 1y2I

Dyadic BMO

# K22nyrj. [7]

We define S*n,1,1 to be the set of maximal tiles q with u^f1,
fq,1&u $ 22nyr121=uIqu, and take Sn,1,1 to consist of all tiles t
so that t1 , q for some q [ S*n,1,1. These tiles are removed,
and then Sn,i,i is defined similarly for i 5 2, 3. After the
deletion of the tiles D0 5 øi51

3 Sn,i,i, we have u^fi, fti&u #
22nyri21=uItu for all tiles t [ Sr9 5 Sr\D0.
The set Sn,1,2 has a slightly different construction. Consider

1-CF sets Tq , Sr9 with top q so that D(T, 2) $ 22nyr211. We
take Tq to be the maximal 1-CF set with this property. Let q(1)
be such a top, which is maximal with respect to ,, and in
addition sup{juj [ vq} is maximal. Remove the tiles Tq(1), and
repeat this procedure to define Tq(2) and so on. Sn,1,2 is then
ø,Tq(,) and S*n,1,2 5 {q(,)u, $ 1}. Observe that for any 1-CF
set T , Sr9\Sn,1,2, we have D(T, 2) # 22nyr211. These proce-
dures are repeated inductively to define the Sn,i, j for all n, i, j.
With the construction above it is elementary to check that

these properties hold.

u^fi, fqi&u
ÎuIqu

$ 22nyri21, q [ S*n,i,i, [8]
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And in the case of iÞ j, the collection Sn,i, j is a union of disjoint
i-CF sets Tq, with q [ S*n,i, j, for which:

u^fi, ftj&u
ÎuItu

# 22nyri21, t [ Tq and D~Tq, j! $ 22nyrj11. [9]

These last two bounds differ by a factor of 4, which is relevant
below. See the comments concerning the minimal tiles imme-
diately following Lemma 3 below. To achieve Eq. 4, one must
delete some tiles t, using Eq. 2, the upper bounds Eqs. 6 and
7, and the control on the number of trees given in Eq. 5.
The essence of the matter lies in the control of the number

of CF-sets, which is in the verification of Eq. 5. Eq. 5 relies
upon the inequalities in the previous paragraph and Lemma 2
and 3 below, which address the issue of almost orthogonality.
Let us consider Sn,1,1, say. The tiles S*n,1,1 are maximal and

therefore pairwise disjoint, which suggest weak orthogonality
for the collection of functions {fq,1uq [ S*n,1,1}. If they were
in fact orthogonal, Bessel’s inequality and Eq. 8 implies:

O
q[S*n,1,1

uIqu # 22nyri12 O
q[S*n,1,1

u^f1, fq1&u2 # 22nyri12if1i2
2.

While f1 is not in L2, this inequality can be strengthened to an
analogous form for Lr for r . 2.
However, disjointness of tiles does not imply orthogonality,

because the functions fq,1 are not compactly supported in the
x variable. Indeed, by our choice of f, for two tiles t and s we
have ^fti, fsi& 5 0 if vti ù vsi 5 À or vti 5 vsi. But if vti
,Þ vsi then for all n $ 0:

u^fti, fsi&u # CnÎuIsu
uItu

S1 1
dist~It, Is!

uItu
D2n

. [10]

If we assume that a stronger separation of the tiles in the x
variable, then we would expect orthogonality. And in this
direction we have:

LEMMA 2. For n $ 1 there are constants K and Kn so that the
following holds for all A $ 1. Let S be any collection of tiles so
that:

$AIt 3 vtiut [ S} are pairwise disjoint. [11]

Here, for an interval I, AI denotes the interval with the same
center as I and length AuIu. Set NS(x) 5 •t[S1It(x). Then:

O
t[S

u^f, fti&u2 # K(1 1 KnA2niNSi`)ifi2
2.

A further combinatorial lemma asserts that if the tiles {tiut [
S*} are merely disjoint, then after deleting tiles t for which It
falls in an exceptional set of small measure, S* is a union of
O(A3) collections of tiles S that satisfy the stronger disjointness
condition (Eq. 11).
The previous lemma is essential in obtaining Eq. 5 for the

classes Sn,i,i. A corresponding lemma is necessary for the Sn,i, j,
with i Þ j, with Eq. 9 replacing the role of Eq. 8. It is:

LEMMA 3. For n $ 1 there are constants K and Kn so that the
following holds for all A $ 1. Let S be a union of j-CF sets Tq
with tops q [ S*. Suppose that:

AIt , Iq for all t [ Tq and q [ S*,

and for t [ Tq, q [ S* and i Þ j fixed,

if vti,Þvsi for some s [ S, then Iq ù Is 5 À. [12]

Set NS(x) 5 •q[S* 1Iq(x). Then:

O
t[S

u^f, fti&u2 # K(1 1 KnA2niNSi`)ifi2
2.

Notice that in a j-CF set Tq, the tiles {vtiut [ Tq} are pairwise
disjoint. Thus Eq. 12 is stronger than merely asserting that the
tiles {vtiut [ T} are pairwise disjoint. With the construction of
the Sn,i, j for i Þ j given above, Eq. 12 is true after deleting the
minimal tiles Sn,i, jmin in Sn,i, j. The minimal tiles are controlled
with the first half of Eq. 9 and the observation that •s[Sn,i, jmin

1Is(x) # Nn,i, j(x) for all x.
The method of proof of both Lemmas 2 and 3 is similar. For

instance, in Lemma 2, one considers the operator:

6Sf~x! 5 O
t[S

^f, fti&fti~x!.

If S is finite, this is a compact self-adjoint operator, with
maximal eigenvalue B. It suffices to estimate B, as for all f [
L2, •t[S u^f, fti&u2 5 ^f, 6Sf& # Bifi22. Consider a normalized
extremal eigenfunction f of 6S. One then estimates:

B2 5 i6Sfi2
2 5 O

t[S
O
s[S

^f, fti&^fti, fsi&^fsi, f&,

which is expanded in diagonal and off-diagonal terms. The
diagonal term is •t[S u^f, fti&u2 5 ^f, 6Sf& # B, which is an
adequate estimate for B2. The off-diagonal term is by Cauchy–
Schwarz,

2 # 2O
t[S

u^f, fti&u O
s[S

vti,Þvsi

u^fti, fsi&^fsi, f&u

# 2B1y2F Ot[SF O
s[S

vti,Þvsi

U ^fti, fsi&^f, fsi&UG 2G 1y2.
The innermost sum is bounded by CnA2n=uItu infx[ItMMf(x).
This is seen by invoking the estimate u^f, fsi&u # K=uIsu
infx[IsMf(x), using Eq. 10 and carefully exploiting the geom-
etry of the tiles via the assumption 11.
One then sees that the off-diagonal term is no more than:

2 # CnB1y2A2nO
t[S

uItu inf
x[It

~MMf!2~x! # CnB1y2A2niNSi`.

This, with the diagonal estimate, proves that B2 # B 1
CnB1y2A2niNSi`, whence follows Lemma 2.
The research outlined herein is the product of several years

of effort (6, 7).
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